Integration: Trigonometric

1. Powers of sine and cosine. Integrals of the form $\int \sin^m x \cos^n x \, dx$.

$\int \sin^m x \cos^n x dx$	Procedure	Relevant Identities
<i>n</i> odd	 Split off a factor of cos(x). Apply the relevant identity. 	$\cos^2 x = 1 - \sin^2 x$
	3. Make the substitution $u = sin(x)$	
<i>m</i> odd	 Split off a factor of sin(x). Apply the relevant identity. 	$\sin^2 x = 1 - \cos^2 x$
	3. Make the substitution $u = \cos(x)$	
<i>m</i> even and <i>n</i> even	Use the relevant identities to reduce the powers on sin(x) and cos(x).	$\sin^2 x = \frac{1}{2} \ 1 - \cos(2x)$ $\cos^2 x = \frac{1}{2} \ 1 + \cos(2x)$

2. Powers of tangent and secant. Integrals of the form $\int \tan^m x \sec^n x \, dx$.

$\int \tan^m x \sec^n x dx$	Procedure	Relevant Identities
<i>n</i> even	 Split off a factor of sec² x. Apply the relevant identity. (all in terms of tan) Make the substitution u = tan x 	$\sec^2 x = \tan^2 x + 1$
<i>m</i> odd	 Split off a factor of sec <i>x</i> tan <i>x</i>. Apply the relevant identity. (all in terms of sec) Make the substitution <i>u</i> = sec <i>x</i> 	$\tan^2 x = \sec^2 x - 1$
<i>m</i> even and <i>n</i> odd	Use the relevant identities to reduce to powers of sec <i>x</i> alone. Then use reduction formulas for powers of secant.	$\tan^2 x = \sec^2 x - 1$

Trigonometric Substitution

Integrals that contain expression of the form

$$\sqrt{a^2-x^2}, \sqrt{x^2+a^2}, \sqrt{x^2-a^2}.$$

Expression in the	Substitution	Restriction on θ
integrand		
$\sqrt{a^2-x^2}$	$x = a\sin\theta$	$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$
$\sqrt{x^2 + a^2}$	$x = a \tan \theta$	$-\frac{\pi}{2} < \theta < \frac{\pi}{2}$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$	$0 \le \theta < \frac{\pi}{2} \cup \pi \le \theta < \frac{3\pi}{2}$