Integration: Trigonometric

1. Powers of sine and cosine.

Integrals of the form $\int \sin ^{m} x \cos ^{n} x d x$.

| $\int \sin ^{m} x \cos ^{n} x d x$ | Procedure | Relevant Identities |
| :--- | :--- | :--- |
| $n$ odd | 1. Split off a factor of <br> $\cos (\mathrm{x})$. <br> 2. Apply the relevant <br> identity. <br> 3. Make the <br> substitution $u=\sin (\mathrm{x})$ | $\cos ^{2} x=1-\sin ^{2} x$ |
| $m$ odd | 1. Split off a factor of <br> $\sin (\mathrm{x})$. <br> 2. Apply the relevant <br> identity. <br> 3. Make the <br> substitution $u=\cos (\mathrm{x})$ | $\sin ^{2} x=1-\cos ^{2} x$ |
| $m$ even and $n$ even | Use the relevant <br> identities to reduce <br> the powers on $\sin (\mathrm{x})$ <br> and cos(x). | $\sin ^{2} x=\frac{1}{2} 1-\cos (2 x)$ |
| $\cos ^{2} x=\frac{1}{2} 1+\cos (2 x)$ |  |  |

2. Powers of tangent and secant.

Integrals of the form $\int \tan ^{m} x \sec ^{n} x d x$.

| $\int \tan ^{m} x \sec ^{n} x d x$ | Procedure | Relevant Identities |
| :--- | :--- | :---: |
| $n$ even | 1. Split off a factor of $\sec ^{2} x$. <br> 2. Apply the relevant <br> identity. (all in terms of tan) <br> 3. Make the substitution <br> $u=\tan x$ | $\sec ^{2} x=\tan ^{2} x+1$ |
| $m$ odd | 1. Split off a factor of <br> sec $x$ tan $x$. <br> 2. Apply the relevant <br> identity. (all in terms of sec) <br> 3. Make the substitution <br> $u=$ sec $x$ | $\tan ^{2} x=\sec ^{2} x-1$ |
| $m$ even and $n$ odd | Use the relevant identities to <br> reduce to powers of sec $x$ <br> alone. | $\tan ^{2} x=\sec ^{2} x-1$ |
| Then use reduction formulas |  |  |
| for powers of secant. |  |  |$\quad$|  |
| :--- |

## Trigonometric Substitution

Integrals that contain expression of the form

$$
\sqrt{a^{2}-x^{2}}, \sqrt{x^{2}+a^{2}}, \sqrt{x^{2}-a^{2}}
$$

| Expression in the <br> integrand | Substitution | Restriction on $\theta$ |
| :--- | :--- | :--- |
| $\sqrt{a^{2}-x^{2}}$ | $x=a \sin \theta$ | $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ |
| $\sqrt{x^{2}+a^{2}}$ | $x=a \tan \theta$ | $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$ |
| $\sqrt{x^{2}-a^{2}}$ | $x=a \sec \theta$ | $0 \leq \theta<\frac{\pi}{2} \cup \pi \leq \theta<\frac{3 \pi}{2}$ |

