Math 280, Power Series (sec 11.8)
If 
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are constants and x is a variable, then the series of the form
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is called a powers series in x - a, centered at x = a. Letting x = 0 gives us 
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If we substitute a numerical value for x in the power series, then we obtain a series of constants that may converge or diverge.

Examples:
1. 
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.  The resulting series is a convergent geometric series.
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 where 
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.  The resulting series is divergent. 
Fundamental Problem:  For which values of x does a given power series converge? 
Theorem:  For a power series
[image: image12.wmf](

)

0

n

n

n

cxa

¥

=

-

å

, exactly one of the following is true:

1. 
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converges for x = a only.

2. 
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converges absolutely for all x.

3. 
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converges absolutely for all x in some finite open interval 
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.  At the end points 
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, the series may converge absolutely, converge conditionally, or diverge depending on the particular series. We must CHECK the endpoints to see what the series does there.
R is called the radius of convergence.  The set of all values for which the series converges is called the interval of convergence. We often use the ratio test to find the radius of convergence.
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Identify 
[image: image21.wmf]n

c

and then find the radius of convergence for the following.
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Taylor Polynomials/Taylor Series (11.10)
Definition:  If f can be differentiated n times at a, then define the 
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 Taylor Polynomial for f about x = a  

          
[image: image28.wmf]()

23

()()()

()()()()()()......()

2!3!!

n

n

n

fafafa

Pxfafaxaxaxaxa

n

¢¢¢¢¢

¢

=+-+-+-++-


                   When a = 0, the resulting polynomial is called the Maclaurin polynomial.

Examples:  

1. Find the 
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2. Find the 
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3. Find a third degree Taylor polynomial for 
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Definition:  If f has derivatives of all orders at x = a, then we define the Taylor Series for f about x = a as 
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                    When a = 0, the resulting series is called the Maclaurin series.

Examples:  
1. Find the Maclaurin series for the following series 
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.  The Maclaurin series for this function is called the binomial series.
2. Use a known Maclaurin series to obtain the Maclaurin series for the given function.  
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[image: image40.wmf])

2

sin(

)

(

x

x

f

=


b. 
[image: image41.wmf])

2

sin(

)

(

2

x

x

x

f

=


c. 
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e. 
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f. 
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3. Use Maclaurin series to approximate the integral to three decimal-place accuracy.

a. 
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EXAMPLE: Find radius of convergence for � EMBED Equation.3  ���. � EMBED Equation.3  ���


So the ONLY value for x that we could plug in that would make this series converge would be x = 0.
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