

NAME

Take Home Quiz #4 – Due Tuesday, 10/1520 pointsYou may use a calculator. Your work must be your own. Show work that leads to your answers.

| For any Discrete Probability Distribution                    | For a Binomial Distribution |
|--------------------------------------------------------------|-----------------------------|
| $\mu = \sum \left[ x \cdot P(x) \right]$                     | $\mu = np$                  |
| $\sigma = \sqrt{\sum \left[ x^2 \cdot P(x) \right] - \mu^2}$ | $\sigma = \sqrt{npq}$       |

1. In a survey, adults were asked how many credit card accounts they have. The random variable x represents the number of credit card accounts. Here is the distribution of the survey results:

| Number of       |      |
|-----------------|------|
| Credit Cards, x | P(x) |
| 0               | 0.17 |
| 1               | 0.21 |
| 2               | 0.33 |
| 3               | 0.26 |
| 4               | 0.03 |

Math 160: Vanden Eynden

- a. Explain why this is a **probability distribution**. [hint: there are 2 requirements]
- b. If an adult is selected randomly, what is the probability that the adult has 2 or more credit cards?
- c. Find the **mean** number of credit cards. Show work.
- d. Find the **standard deviation**. Show work.

e. Based on this survey data, is it **unusual** for an adult to have 4 credit cards? Explain.

## NO TUTOR HELP

You may need to use the calculator functions: binompdf(n, p, x) or binomcdf(n, p, x)

- 2. A study found that 59% of teenagers like riding roller coasters. A random sample of 20 teenagers is selected.
- a. The number of teenagers who like riding roller coasters out of 20 has a binomial distribution. What are n, p and q?

*n* = \_\_\_\_\_ *p* = \_\_\_\_\_ *q* = \_\_\_\_\_

b. What is the probability that exactly 10 teenagers like riding roller coasters?

c. What is the probability of more than 15 teenagers like riding roller coasters?

d. Find the <u>mean</u> (expected value) and <u>standard deviation</u> of the number of teenagers who like roller coasters, out of 20 randomly selected teenagers.

e. The rule of thumb is that anything beyond 2 standard deviations is unusual. In a random sample of 20 teenagers, only 8 like riding roller coasters. Is this result unusual? Why or why not?