Math 245: 2.2 Conditional Statements

Conditional Statement: "If p then q" \quad " $\rightarrow q$
Writing IF-THEN as an OR
Negation of IF-THEN
$p \rightarrow q \equiv \sim p \vee q$
$\sim(p \rightarrow q) \equiv \sim(\sim p \vee q) \equiv p \wedge \sim q$

The contrapositive of $p \rightarrow q$:
$\sim q \rightarrow \sim p$
The converse of $p \rightarrow q$:
The inverse of $p \rightarrow q$:
$q \rightarrow p$
$\sim p \rightarrow \sim q$

Of these 4 statements, which are logically equivalent?
The conditional and its contrapositive:
$p \rightarrow q \equiv \sim q \rightarrow \sim p$
The converse and the inverse of $p \rightarrow q$:
$q \rightarrow p \equiv \sim p \rightarrow \sim q$

"Only If" Statement: "p only if q" means "if not q, then not p "

$$
\sim q \rightarrow \sim p \quad \equiv \quad p \rightarrow q
$$

"if not q, then not p" "if p, then q"

Biconditional Statement:

$$
\begin{aligned}
& \text { "p if and only if } \mathbf{q "} \quad p \leftrightarrow q \\
& \text { also "p iff q" } \\
& p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)
\end{aligned}
$$

Necessary and Sufficient Conditions:

" r is a sufficient condition for s " means "if r then s" $r \rightarrow s$
" r is a necessary condition for s " means "if not r then not s " $\sim r \rightarrow \sim s \equiv s \rightarrow r$
" r is a necessary and sufficient condition for $\mathrm{s} "$ means $r \leftrightarrow s$

"Unless" Statement:

"r unless s" means "if not s, then r" $\sim s \rightarrow r$

