Chapter 3 & 4 Review Sheet Math 176, Precalculus, Vanden Eynden

Sketch the graph of the function by transforming the graph of the "parent" function. Describe each transformation in words.

- Transformation: Parent function $T(x) = -x^{4} + 2$ $P(x) = x^{4}$ $T(x) = \frac{1}{2x}$ $P(x) = \frac{1}{x}$ $P(x) = \frac{1}{x}$ $P(x) = \frac{1}{x}$ 1. 2.
- 3.

4.
$$T(x) = 3 + 5^{(-x)}$$
 $P(x) = 5^x$

5.
$$T(x) = \ln(x+2) - 3$$
 $P(x) = \ln x$

- 6. Given the polynomial $P(x) = x^4 + x^2 6x + 4$,
 - a. Determine the end behavior of P(x).
 - b. How many complex zeros (real or imaginary) does P(x) have (counting multiplicities)?
 - c. How many local extrema can P(x) have?
 - d. List all the possible rational zeros of P(x).
 - e. Graph P(x) on your calculator. Can you determine any integer zeros?
 - f. Find the domain and range for P(x).
 - g. Using the above information (and synthetic division), find **all** the zeros of P(x).
 - h. Write the complete factorization of P(x).
 - i. Sketch a graph of P(x).

7. Divide. a.
$$(2x^3 + x^2 - 8x + 15) \div (x^2 + 2x)$$
. b. $(3x^3 - 5x - 4) \div (x - 2)$.

- 8. Find a polynomial of degree 4 having integer coefficients and zeros 3i and 4, with 4 having multiplicity of 2.
- 9. Does there exist a polynomial of degree 4 with integer coefficients that has zeros i, 2i, 3i, 4i? If so, find it. If not, explain why.
- 10. The remainder of $\frac{P(x)}{x-5}$ is 17. What can you say about P(5)?
- 11. What is the remainder when the polynomial $P(x) = x^{500} + 6x^{203} 5x + 32$ is divided by x 1?
- 12. If a polynomial p(x) has a zero at x = c of multiplicity 2, what does the graph of p(x) look like at *c*?
- 13. Graph the following rational functions. Show clearly all x- and y-intercepts and asymptotes (vertical, horizontal, or slant). Finally, name the Domain and Range for each function.

a.
$$r(x) = \frac{3x-1}{2x+4}$$
 b. $r(x) = \frac{2x^2 - 6x - 7}{x-4}$ c. $r(x) = \frac{1}{(x-2)^2}$

14. Solve each inequality.

- a. $x^3 3x^2 < 4x 12$ b. $\frac{3x+1}{x+2} \ge \frac{2}{3}$
- 15. If $f(x) = 5^x$ then $f^{-1}(x) =$
- 16. If $k(x) = \log_4 x$ then $k^{-1}(x) =$

17. Evaluate each expression without using a calculator.

a. $\ln(e^6)$ b. $\log_4 8$ c. $e^{2\ln7}$ d. $\log_8 6 - \log_8 3 + \log_8 2$ e. $\log(\log(10^{10}))$ f. $\log_3 1$ g. $\ln\sqrt{e}$ h. $\log_3(\frac{1}{3})$

Use the laws of logarithms to rewrite the following expressions in "expanded form".

18.
$$\log(x^2\sqrt{y})$$
 19. $\log_2\left(\frac{x-1}{x+1}\right)^2$

Rewrite as a single logarithm and simplify, if possible.

20. $\ln x + \ln(x^2 y) + 3\ln y$ 21. $\frac{3}{2}\log(x - y) - 2\log(x^2 - y^2)$

Solve:

- 22. $e^{3x} = 10$ 23. $2^{1-x} = 3^{2x+5}$ 24. $\log(\log x) = 1$
- 25. $\log x + \log(x+1) = \log 12$ 26. $\log_2 x 3\log_2 5 = 2\log_2 10$
- 27. A rancher with 800 ft of fencing wants to enclose a rectangular area and then divide it into 3 pens with fencing parallel to one side of the rectangle.
 - a. Find a function A(x), that gives the total area in terms of x.
 - b. State the domain of A(x) in the context of this problem.
 - c. Graph this function on its domain.
 - d. What are the dimensions that yield the maximum area?
- 28. A sum of \$5000 is invested at an interest rate of 8.5% per year, compounded semi-annually.
 - a. Find the amount of the investment after 1.5 years.
 - b. After what period of time will the investment amount to \$7000?
- 29. An open box (it has no top) with a square base is to have a volume of 12 cubic feet.
 - a. Find a function that models the surface area of the box.
 - b. Find the box dimesions that minimize the amount of material used.
- 30. Find the rate of interest on an account in which a \$2500 investment has grown to \$2790 in 1 year if the interest on the account is compounded continuously.
- 31. Express the quadratic function $g(x) = -2x^2 + 12x 13$ in standard form, $g(x) = a(x-h)^2 + k$. Does g have a maximum or minimum? What is it?