
Solutions to Practice Problems from Ch. 3  
Math 180 , Vanden Eynden 
 
1.  Differentiate the functions: 
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3.   Differentiate implicitly: 3
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Tangent line at (1, 1):       y = x     
See graph to verify. 
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So tangent is horizontal when 1x = −  
See graph to verify. 
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So the tangent line is horizontal at (–3, 0). 
 
See graph to verify. 

 
 
 
 

6. 
( )

1 8sin(2 )
4 9

y x
y π

′ = +
′ =

 So tangent line:   9 2y x π= −  

 

7.   Implicitly differentiate 3
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See graph to verify. 
 

 
9.  a. By chain rule: 
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     b. By Quotient rule: 
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10.  Use law of cosines.   Angle between them is 45º = 
4
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2 2 2 2c a b ab= + −     Now differentiate implicitly with respect to time, t 
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11.  a.  123)()( 2 −=′= ttstv  

( ) ( ) 6a t s t t′′= =  
 
       b.  The particle moving upward when 0)2)(2(3123)( 2 >+−=−= ttttv .   

That happens when t > 2 or t < –2.  In this problem, only t > 2 makes sense. 
The particle moving downward when 0123)( 2 <−= ttv .   
That happens when –2 < t < 2.  Only 0< t< 2 makes sense in this problem. 

 
        c.  When is the particle speeding up and when is it slowing down? 

The particle is speeding up when the sign of v(t) is the same as the sign of a(t). 
That happens when –2 < t< 0 or t >2.  Only t >2 makes sense in this problem. 
The particle is slowing down when the signs are different. 
That happens when t <–2  or 0< t< 2 .  Only 0< t< 2 makes sense in this problem. 

 
 
  
 
 
 
 
 
12.   =f  c,  the zero of “c” does not correspond to a max or min (0 slope) in the other 2 functions. 

=′f  a,  the zero of “a” corresponds the minimum (0 slope) of “c”. 
 f ′′ =  b, the zero of “b” corresponds to the maximum (0 slope) of “a”. 
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13. a. t = 6 sec, when v(t) switches from positive to negative, the bug will stop crawling UP the 
wire, and start crawling DOWN the wire. 

 
 b. 0 < t < 6 sec 
 
 c. 6 < t < 9 sec 
 

d. speed = |v(t)| , is greatest when 2 ≤ t ≤ 5 and when 7 ≤ t ≤ 8.  The bug is crawling up (or 
down) the wire at 6 mm/sec during those times. 

 
 e. t = 0 sec, 6 sec, 9 sec.  This is when v(t) = 0. 
 

f. No.  The bug is crawling up the wire for 6 seconds, and only crawling down the wire for 4 
seconds.  The bug will not return to the bottom within the first 9 seconds. 

 
 
 

14. Find dz
dt

 after 3 seconds. 

 We know: 15dx
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 Moment in time:  3 seconds has passed 
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 Pythagorean Thrm: 2 2 2z x y= +   
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Plug and chug and solve for dz
dt

 = 13 ft/s 

 
 
 
15. a.  See graph 
  

b.  
dx
dT  is the rate of change of the temperature of the 

can of soda with respect to time.  
 
c. degrees Fahrenheit  per minute,    º F/min 
 
 

d. 
dx
dT  is negative, since the soda can is cooling and it’s temperature is decreasing. 
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