Solutions to Practice Problems from Ch. 3 Math 180 , Vanden Eynden

1. Differentiate the functions:
a. $f^{\prime}(x)=4 x^{3}+\frac{4}{3 x^{3}}$
b. $y^{\prime}=0$
j. $h^{\prime}(x)=\frac{23}{(5 x+1)^{2}}$
k. $f^{\prime}(x)=\frac{6 x^{5}}{x^{6}+1}$
c. $h^{\prime}(x)=\frac{-4 x^{3}+12 x^{2}+10}{\left(x^{3}+2 x+1\right)^{2}}$
d. $F^{\prime}(x)=\cos x+\cos ^{2} x-\sin ^{2} x$
2. $y^{\prime}=(3 x)^{x}(\ln (3 x)+1)$
m. $g^{\prime}(x)=-4 \csc (4 x) \cot (4 x)$
e. $s^{\prime}(x)=\frac{-\sec ^{2} x}{2 \sqrt{1-\tan x}}$
n. $y^{\prime}=\frac{6}{\sqrt{1-36 x^{2}}}$
f. $y^{\prime}=-2 x \tan \left(x^{2}\right)$
o. $k^{\prime}(x)=e^{x^{2}}\left(2 x^{4}-6 x^{3}+3 x^{2}+4 x\right)$
g. $y^{\prime}=15 \sec (3 x) \tan (3 x)$
p. $y^{\prime}=\frac{e^{x}}{1+e^{2 x}}$
h. $n^{\prime}(x)=\pi^{x} \ln \pi$
i. $y^{\prime}=e^{\cos x}(1-x \sin x)$
q. $y^{\prime}=\cos ^{-1}\left(x^{3}\right)-\frac{3 x^{3}}{\sqrt{1-x^{6}}}$
3. $\frac{d h}{d x}=1-\frac{x \sin ^{-1}(x)}{\sqrt{1-x^{2}}}$
4. Differentiate implicitly: $\frac{d y}{d x}=\frac{3 x^{2}(2-y)}{2 y+x^{3}}$, so $\mathrm{m}=1$

Tangent line at $(1,1): \quad y=x$
See graph to verify.

4.

$$
\begin{aligned}
f^{\prime}(x)= & -e^{-x}-x e^{-x}=0 \\
& -e^{-x}(1-x)=0
\end{aligned}
$$

So tangent is horizontal when $x=-1$ See graph to verify.

5. Set $y^{\prime}=\frac{2 \ln (x+4)}{x+4}=0$ and solve for x . when $x=-3$

So the tangent line is horizontal at $(-3,0)$.
See graph to verify.

$y^{\prime}=1+8 \sin (2 x)$
6. $y^{\prime}(\pi / 4)=9 \quad$ So tangent line: $y=9 x-2 \pi$
$y^{\prime}(\pi / 4)=9$
7. Implicitly differentiate $V=\frac{4}{3} \pi r^{3}$ with respect to $t: \frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}$
$\frac{d V}{d t}=100, r=25 \quad$ Plug in and solve for $\frac{d r}{d t}$
$\frac{d r}{d t}=\frac{1}{25 \pi} \mathrm{~cm} / \mathrm{s} \approx 0.0127 \mathrm{~cm} / \mathrm{s}$
8. Slope $=y^{\prime}(x)=\frac{e^{x}+2 e^{2 x}}{e^{x}+e^{2 x}}$ at $x=0, y^{\prime}(0)=\frac{3}{2}$

So equation of tangent line is $y=\frac{3}{2} x+\ln 2$.
See graph to verify.

9. a. By chain rule:
$H^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$, so
$H^{\prime}(2)=f^{\prime}(g(2)) g^{\prime}(2)$
From the graph $g(2)=-2, g^{\prime}(2)=-1$, so we have
$H^{\prime}(2)=\left(f^{\prime}(-2)\right) \cdot-1$
$f^{\prime}(-2)=2$, so that gives

$$
H^{\prime}(2)=(2) \cdot-1
$$

So $H^{\prime}(2)=-2$
b. By Quotient rule:
$P^{\prime}(x)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$, so

Using graph:

$$
\begin{aligned}
& P^{\prime}(-2)=\frac{g(-2) f^{\prime}(-2)-f(-2) g^{\prime}(-2)}{[g(-2)]^{2}} \\
& P^{\prime}(-2)=\frac{(2)(2)-(-2)(-1)}{[2]^{2}}=\frac{1}{2}
\end{aligned}
$$

So $P^{\prime}(-2)=\frac{1}{2}$
10. Use law of cosines. Angle between them is $45^{\circ}=\frac{\pi}{4}$ radians
$c^{2}=a^{2}+b^{2}-2 a b \cos \left(\frac{\pi}{4}\right)$
30 minutes $=1 / 2$ hour
$\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=2.125, \frac{d a}{d t}=4, \frac{d b}{d t}=6$

$c^{2}=a^{2}+b^{2}-2 a b \frac{\sqrt{2}}{2}$
$c^{2}=a^{2}+b^{2}-\sqrt{2} a b \quad$ Now differentiate implicitly with respect to time, t
$2 c \frac{d c}{d t}=2 a \frac{d a}{d t}+2 b \frac{d b}{d t}-\sqrt{2}\left(a \frac{d b}{d t}+b \frac{d a}{d t}\right)$ Plug and chug and solve for $\frac{d c}{d t}=4.25 \mathrm{mph}$
11. a. $\quad v(t)=s^{\prime}(t)=3 t^{2}-12$

$$
a(t)=s^{\prime \prime}(t)=6 t
$$

b. The particle moving upward when $v(t)=3 t^{2}-12=3(t-2)(t+2)>0$.

That happens when $\mathrm{t}>2$ or $\mathrm{t}<-2$. In this problem, only $\mathrm{t}>2$ makes sense.
The particle moving downward when $v(t)=3 t^{2}-12<0$.
That happens when $-2<\mathrm{t}<2$. Only $\mathbf{0}<\mathbf{t}<\mathbf{2}$ makes sense in this problem.
c. When is the particle speeding up and when is it slowing down?

The particle is speeding $u p$ when the sign of $\mathrm{v}(\mathrm{t})$ is the same as the sign of $\mathrm{a}(\mathrm{t})$.
That happens when $-2<\mathrm{t}<0$ or $\mathrm{t}>2$. Only $\mathbf{t}>2$ makes sense in this problem.
The particle is slowing down when the signs are different.
That happens when $\mathrm{t}<-2$ or $0<\mathrm{t}<2$. Only $\mathbf{0}<\mathbf{t}<2$ makes sense in this problem.

12. $f=c$, the zero of " c " does not correspond to a max or min (0 slope) in the other 2 functions.
$f^{\prime}=\mathrm{a}$, the zero of "a" corresponds the minimum (0 slope) of "c".
$f^{\prime \prime}=\mathrm{b}$, the zero of "b" corresponds to the maximum (0 slope) of "a".
13. a. $t=6 \mathrm{sec}$, when $v(t)$ switches from positive to negative, the bug will stop crawling UP the wire, and start crawling DOWN the wire.
b. $\quad 0<t<6$ sec
c. $\quad 6<t<9$ sec
d. \quad speed $=|\mathrm{v}(\mathrm{t})|$, is greatest when $2 \leq \mathrm{t} \leq 5$ and when $7 \leq \mathrm{t} \leq 8$. The bug is crawling up (or down) the wire at $6 \mathrm{~mm} / \mathrm{sec}$ during those times.
e. $\quad t=0 \sec , 6 \mathrm{sec}, 9 \mathrm{sec}$. This is when $\mathrm{v}(\mathrm{t})=0$.
f. No. The bug is crawling up the wire for 6 seconds, and only crawling down the wire for 4 seconds. The bug will not return to the bottom within the first 9 seconds.
14. Find $\frac{d z}{d t}$ after 3 seconds.

We know: $\quad \frac{d x}{d t}=15, \quad \frac{d y}{d t}=5$
Moment in time: 3 seconds has passed

$$
\begin{aligned}
& x=15 \cdot 3=45 \mathrm{ft} \\
& y=45+5 \cdot 3=60 \mathrm{ft} \\
& z=\sqrt{5625}=75 \mathrm{ft}
\end{aligned}
$$

Pythagorean Thrm: $\quad z^{2}=x^{2}+y^{2}$
Implicit Diff:

$$
2 z \frac{d z}{d t}=2 x \frac{d x}{d t}+2 y \frac{d y}{d t}
$$

Plug and chug and solve for $\frac{d z}{d t}=13 \mathrm{ft} / \mathrm{s}$
15. a. See graph
b. $\frac{d T}{d x}$ is the rate of change of the temperature of the can of soda with respect to time.
c. degrees Fahrenheit per minute, ${ }^{\circ} \mathrm{F} / \mathrm{min}$

d. $\frac{d T}{d x}$ is negative, since the soda can is cooling and it's temperature is decreasing.

