Math 180: Chapter 4 Review Sheet ---SOLUTIONS
 Vanden Eynden

1. a. $f^{\prime}(x)=3 x^{2}+3 x-36=0$, Critical Numbers: $x=-4,3$
-4
3
Increasing: $(-\infty,-4) \cup(3, \infty)$
Decreasing: $(-4,3)$
b. Local Max=111@ $\mathrm{x}=-4$, Local Min=-60.5 @ $\mathrm{x}=3$
c. $\quad f^{\prime}(x)=6 x+3=0$, Critical value: $x=-\frac{1}{2}$

Concave up: $(-1 / 2, \infty)$
Concave down: $(-\infty,-1 / 2)$
d. $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
$x_{1}=0$
$x_{2}=0.19444444$
$x_{3}=0.19625914$
$x_{4}=0.19625933$
$x_{5}=0.19625933$
The root is 0.19625933 .
e.

2. $\quad f(x)=x^{3} \sqrt{2-x} \quad$ Domain: $(-\infty, 2]$
$f^{\prime}(x)=\frac{12 x^{2}-7 x^{3}}{2 \sqrt{2-x}}=\frac{x^{2}(12-7 x)}{2 \sqrt{2-x}}$
C.N.'s: $x=0, \frac{12}{7}, 2$

Local MAX is approximately 2.69 @ $x=\frac{12}{7}$
$x=0, x=2$ are neither maximums nor minimums
3. a. Abs max value of $1 / 4$ at $x=2$, Abs min value of 0 at $x=0$.
b. Abs max value of 2π at $\theta=2 \pi$, Abs min value of 0 at $\theta=0$.
4. $\quad f(x)=x^{4 / 3}-8 x^{1 / 3}$ Domain: \mathbb{R}
Intercepts: $(0,0)$ and $(8,0)$
No Vertical or Horizontal asymptotes

$$
f^{\prime}(x)=\frac{4}{3} x^{1 / 3}-\frac{8}{3} x^{-2 / 3}=\frac{4(x-2)}{3 x^{2 / 3}} \quad \text { CNs: } x=2,0
$$

Local min = 7.56 @ $x=2$

$$
\begin{gathered}
f^{\prime \prime}(x)=\frac{4}{9} x^{-2 / 3}-\frac{16}{9} x^{-5 / 3}=\frac{4(x+4)}{9 x^{5 / 3}} \text { PIPs: } x=-4,0 \\
\qquad \begin{array}{c}
+++++\underset{-4}{+-----}+++++++ \\
\longleftrightarrow
\end{array}
\end{gathered}
$$

Inflection points $x=(0,0),(-4,19.05)$
5. Set $y^{\prime \prime}=0$, to find inflection point at $(2,-16), y^{\prime}(2)=-12=$ slope of tangent line $y+16=-12(x-2)$
So line tangent to y at $(2,-16)$ is $\mathbf{y}=\mathbf{- 1 2 x}+\mathbf{8}$
6. $\quad f^{\prime}(x)=\frac{1}{x}$, so $f^{\prime}(1)=1$ and the linear approximation is $L(x)=x-1$.
$\ln (0.98) \approx L(0.98)=0.98-1=-0.02$.
7. Since $f(x)$ is differentiable on [-1, 2], it is also continuous on [-1, 2], thus f satisfies the conditions of the Mean Value Theorem. Therefore, there exists c in the interval $(-1,2)$, such that $f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)}=\frac{5-(-1)}{2+1}=\frac{6}{3}=2$.
This means that at $\mathrm{x}=\mathrm{c}$, the slope of the line tangent is 2 .
Which is the same slope of the line $y=2 x$
8. See figure labeled with the unknown lengths \rightarrow

The constraint equation: $x y=30$ which means $y=\frac{30}{x}$
The objective function to be minimize is:
$A=(x+2)(y+4)$ with the substitution: $y=\frac{30}{x}$.
$A=(x+2)\left(\frac{30}{x}+4\right)=30+4 x+\frac{60}{x}+8$
$A=38+4 x+\frac{60}{x}$

And the derivative: $A^{\prime}=4-\frac{60}{x^{2}}=0$ gives the solution, $x=\sqrt{15}$ and $y=\frac{30}{\sqrt{15}}$.
X
So the dimensions of the page are $(\sqrt{15}+2)$ inches by $\left(\frac{30}{\sqrt{15}}+4\right)$ inches , giving a minimum area of 69.98 square inches.
9.
a. 0
b. 10.5
c. $\mathrm{e}^{0}=1$
10. Constraint: $P=1500=3 x+y \rightarrow y=1500-3 x$

Objective fctn: A = xy = x (1500 - 3x)
Set $A^{\prime}(x)=0$ and solve. $\ldots . x=250 \mathrm{ft}, \mathrm{y}=750 \mathrm{ft}$
11.

12. A) No. $f^{\prime}(x)>0$ always
B) No. $\quad f^{\prime}(x)$ decreases until 0 and then increases, so $f(x)$ is concave down then concave up.
C) YES. $f(x)$ has inflection point at $(0, f(0)) . \quad f^{\prime \prime}(x)$ is negative for $\mathrm{x}<0$, and positive for $\mathrm{x}>0$.
D) Not necessarily
E) Not necessarily
13. We are finding the root of $x^{3}-2=0$, so $f(x)=x^{3}-2$

In calculator: $y 1=x^{3}-2, \quad y 2=f^{\prime}(x)=3 x^{2}$
In calculator: $1 \rightarrow x$ ENTER, $x-y_{1} / y_{2} \rightarrow x$ ENTER, ENTER, \ldots.
$x_{1}=1$
$x_{4}=1.2599$
$x_{2}=1.3333$
$x_{5}=1.2599$ This is the value of $\sqrt[3]{2}$ correct to 4 decimals.
$x_{3}=1.2639$
14. a. $x_{1}=-1$ is a "bad seed" in that the function happens to have a local minimum at $\mathrm{x}=-1$.

Thus Newton's method does not work since the horizontal tangent does not produce an x-intercept. In other words, since $f^{\prime}(1)=0$, you can not compute x_{2}, since you can not divide by 0 in the calculation: $x_{2}=-1-\frac{f(-1)}{f^{\prime}(-1)}$.
b. We are finding the root of $x^{3}-3 x+6=0$, so $f(x)=x^{3}-3 x+6$

In calculator: $y 1=x^{3}-3 x+6, \quad y 2=f^{\prime}(x)=3 x^{2}-3$
In calculator: $-2 \rightarrow x$ ENTER, $x-y_{1} / y_{2} \rightarrow x$ ENTER, ENTER,

$$
\begin{array}{ll}
x_{1}=-2 & x_{4}=-2.355309 \\
x_{2}=-2.444444 & x_{5}=-2.355301 \\
x_{3}=-2.359158 &
\end{array}
$$

15.

a. $d y=\frac{1}{2 \sqrt{x}} d x$
b. $d y=\frac{1}{2 \sqrt{25}}(.03)=.003$
c. $\sqrt{25.03}=\sqrt{25}+\Delta y \approx 5+d y=5+.003=5.003$, so $\sqrt{25.03} \approx 5.003$
16. a. $f(x)$ is continuous and differentiable on $[-1,2]$.
b. Set $f^{\prime}(x)=\frac{f(2)-f(-1)}{2-(-1)} \rightarrow \quad \frac{2}{(x+2)^{2}}=\frac{1}{2}$

Solve for $\mathrm{x}: \mathrm{x}=0,-4 \quad \mathrm{c}=0$ is in the interval $[-1,2]$.

