Exam#4 Review: 4.9 & Chapter 5.1-5.4 Math 180, Vanden Eynden

1. Evaluate the Reimann sum for $f(x) = x^2 - x$, $0 \le x \le 2$ using five approximating rectangles and

a. using right endpoints. Sketch the function and the five rectangles.

- b. using left endpoints. Sketch the function and the five rectangles.
- c. Consider $\int_{0}^{2} (x^{2} x) dx$. Draw a diagram to explain the geometric meaning of this integral.
- d. Use the Fundamental Theorem of Calculus to find $\int_{0}^{2} (x^{2} x) dx$ exactly.
- 2. Use 5 rectangles to approximate the area under the given graph of f from x = 0 to x = 5
 - a. Use left endpoint approximations.
 - b. Use right endpoint approximations.
 - c. Use midpoint approximations.

3. Express the limit as a definite integral on the given interval.

$$\lim_{n \to \infty} \sum_{i=1}^{n} (2x_i^3 - 4) \Delta x, \quad [1,7]$$

4. What is the difference between the types of answers obtained by computing $\int f(x)dx$ and $\int f(x)dx$?

5. If *f* is a differentiable function and 0 < a < b, then what does $\frac{d}{dx} \left[\int_{a}^{b} f(x) dx \right]$ equal?

6. Use the graph to evaluate the integrals

a.
$$\int_{0}^{1} f(x)dx$$

b.
$$\int_{6}^{1} f(x)dx$$

c.
$$\int_{6}^{8} f(x)dx$$

d.
$$\int_{0}^{8} f(x)dx$$

1

7. The graph of the function *f*, consisting of three line segments, is given.

Let
$$g(x) = \int_{-2}^{x} f(t)dt$$

a. Compute g(-2), g(0), g(1) and g(4).

b. Sketch the graph of g(x) on the same grid to the right \rightarrow

- c. Find the instantaneous rate of change of g, with respect to x, at x = 3. In other words: g'(3)
- d. Find the absolute maximum value of g on the closed interval [-2, 4]. Justify your answer.
- 8. Evaluate the definite integrals:

a.
$$\int_{1}^{4} \frac{x-2}{\sqrt{x}} dx$$
 c. $\int_{1}^{3} (x^2 + 3x) dx$

b.
$$\int_{0}^{3} (2\sin x - e^x) dx$$
 d. $\int_{1}^{4} \sqrt{x} (x-2) dx$

e.
$$\int_{0}^{1} (3-x)^{2} dx$$
 g. $\int_{1}^{e} \frac{x^{2}+x+1}{x} dx$

f.
$$\int_{-4}^{-2} \frac{3}{5x} dx$$
 h. $\int_{0}^{1} \frac{1}{1+x^2} dx$

9. Evaluate the indefinite integral

a.
$$\int \frac{1}{4x^2} dx$$
 c. $\int \sqrt[3]{\frac{8}{x}} dx$

b.
$$\int (\sec^2 x + \sec x \tan x) \, dx$$

d.
$$\int \frac{2}{\sqrt{1 - x^2}} \, dx$$

10. Find the exact velocity function and the exact position function given the following information:

$$a(t) = t - 3$$
, $v(0) = 4$, $s(0) = -2$

- 11. The velocity of a particle is $v(t) = t^3 10t^2 + 24t$ ft/sec. Compute the
 - a. Displacement over the interval $0 \le t \le 6$
 - b. Total distance traveled over the interval $0 \le t \le 6$
- 12. A bottle of wine at room temperature (68° F) is placed in a refrigerator at 4pm. Its temperature after t hours is changing at a rate of $-18e^{-0.6t}$ degrees Fahrenheit/hour. Explain in context what the following definite integral represents: $\int_{0}^{3} -18e^{-0.6t} dt$ and then compute the definite integral using your calculator.

- 13. An oil storage tank ruptures at time t = 0 and oil leaks from the tank at a rate of $r(t) = 100e^{-0.01t}$ liters per minute. How much oil leaks out during the first hour? You will need to use your calculator to compute the integral.
- 14. A car is moving along a straight road from A to B, starting at A at time t = 0. Below is a graph of the cars velocity v(t), measured in miles per hour.
 - a. How many miles away from A is the car at time t = 6
 - b. At what time does the car change direction?

c. What does
$$\int_{0}^{8} v(t) dt$$
 represent in this problem?

d. What was the TOTAL distance the car traveled in the 8 hours?

- 15. Let the function F be defined by $F(x) = \int_{0}^{x} \frac{t^2 2t}{e^t} dt$
 - a. Find F'(x) and F''(x).
 - b. If they exist, determine the critical numbers for F.
 - c. Discuss the concavity of the graph of F.

Answers: Exam#4 Review: 4.9 & Chapter 5.1-5.4 Math 180, Vanden Eynden

- 2. These are approximate from the graph, your answers may differ slightly
- a. $L_5 \approx 25.6$ b. $R_5 \approx 19.6$ c. $M_5 \approx 23.8$ 3. $\int_{1}^{7} (2x - 4) dx$
- 4. $\int f(x)dx$ is an indefinite integral and gives a family of functions, the antiderivatives of f(x)

 $\int_{a}^{b} f(x)dx$ is a definite integral from *a* to *b* and gives a number, which can be interpreted as net area between the curve y = f(x) and the *x*-axis.

- 5. $\frac{d}{dx}\left[\int_{a}^{b} f(x)dx\right] = 0$, since $\int_{a}^{b} f(x)dx$ is a number, and the derivative of a constant is zero.
- 6. a. $\frac{3}{2}$ b. -12 c. -3 d. 10.5
- 7. a. Interpret the integral as net area under the curve from -2 to x, so

$$g(-2) = 0$$
 $g(0) = 4$ $g(1) = 6$ $g(4) = 5$

8. a.
$$\frac{2}{3}$$
 b. $3-2\cos 3-e^3$ c. $\frac{62}{3}$ d. $\frac{46}{15}$ e. $\frac{19}{3}$
f. $-\frac{3}{5}\ln(2)$ g. $\frac{e^2}{2}+e-\frac{1}{2}$ h. $\frac{\pi}{4}$
9. a. $-\frac{1}{4x}+C$ b. $\tan x + \sec x + C$ c. $3\sqrt[3]{x^2}+C$ d. $2\sin^{-1}x+C$
10. $v(t) = \frac{1}{2}t^2 - 3t + 4$, and then $s(t) = \frac{1}{6}t^3 - \frac{3}{2}t^2 + 4t - 2$
11. a. 36 feet b. $49\frac{1}{3}$ feet

12. The integral represents the net change in the temperature of the bottle of wine over the 3 hour time period from 4pm to 7pm in degrees Fahrenheit. That is, it is the number of °F the temperature of the bottle fell in 3 hours while being refrigerated. We expect this value to be negative, as the temperature is falling as the bottle is

cooled.
$$\int_{0}^{3} -18e^{-0.6t} dt = -25.04 \,^{\circ}\text{F}$$

13.
$$\int_{0}^{60} 100e^{-0.01t} dt = 4511.9 \text{ liters}$$

14. a. 9 milesb. t = 5 hoursc. Net distance or displacement from A after 8 hours.d. 16 miles

15. a.
$$F'(x) = \frac{x^2 - 2x}{e^x}$$
, and $F''(x) = \frac{-x^2 + 4x - 2}{e^x}$

b. critical values are x = 0 and x = 2 (local max at x = 0, local min at x = 2)

c. Concave Up $\left(2-\sqrt{2},2+\sqrt{2}\right)$, Concave Down $\left(-\infty,2-\sqrt{2}\right)\cup\left(2+\sqrt{2},\infty\right)$