Exam\#4 Review: 4.9 \& Chapter 5.1-5.4

Math 180, Vanden Eynden

1. Evaluate the Reimann sum for $f(x)=x^{2}-x, 0 \leq x \leq 2$ using five approximating rectangles and
a. using right endpoints. Sketch the function and the five rectangles.
b. using left endpoints. Sketch the function and the five rectangles.
c. Consider $\int_{0}^{2}\left(x^{2}-x\right) d x$. Draw a diagram to explain the geometric meaning of this integral.
d. Use the Fundamental Theorem of Calculus to find $\int_{0}^{2}\left(x^{2}-x\right) d x$ exactly.
2. Use 5 rectangles to approximate the area under the given graph of f from $x=0$ to $x=5$
a. Use left endpoint approximations.
b. Use right endpoint approximations.
c. Use midpoint approximations.
3. Express the limit as a definite integral on the given interval.

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(2 x_{i}^{3}-4\right) \Delta x, \quad[1,7]
$$

4. What is the difference between the types of answers obtained by computing $\int f(x) d x$ and $\int_{a}^{b} f(x) d x$?
5. If f is a differentiable function and $0<\mathrm{a}<\mathrm{b}$, then what does $\frac{d}{d x}\left[\int_{a}^{b} f(x) d x\right]$ equal?
6. Use the graph to evaluate the integrals
a. $\int_{0}^{1} f(x) d x$
b. $\int_{6}^{1} f(x) d x$
c. $\int_{6}^{8} f(x) d x$
d. $\int_{0}^{8} f(x) d x$

7. The graph of the function f, consisting of three line segments, is given.

$$
\text { Let } \quad g(x)=\int_{-2}^{x} f(t) d t
$$

a. Compute $g(-2), g(0), g(1)$ and $g(4)$.
b. Sketch the graph of $g(x)$ on the same grid to the right \rightarrow

c. Find the instantaneous rate of change of g, with respect to x, at $x=3$. In other words: $g^{\prime}(3)$
d. Find the absolute maximum value of g on the closed interval $[-2,4]$. Justify your answer.
8. Evaluate the definite integrals:
a. $\int_{1}^{4} \frac{x-2}{\sqrt{x}} d x$
b. $\int_{0}^{3}\left(2 \sin x-e^{x}\right) d x$
c. $\int_{1}^{3}\left(x^{2}+3 x\right) d x$
d. $\int_{1}^{4} \sqrt{x}(x-2) d x$
e. $\int_{0}^{1}(3-x)^{2} d x$
f. $\int_{-4}^{-2} \frac{3}{5 x} d x$
g. $\int_{1}^{e} \frac{x^{2}+x+1}{x} d x$
h. $\int_{0}^{1} \frac{1}{1+x^{2}} d x$
9. Evaluate the indefinite integral
a. $\int \frac{1}{4 x^{2}} d x$
c. $\int \sqrt[3]{\frac{8}{x}} d x$
b. $\int\left(\sec ^{2} x+\sec x \tan x\right) d x$
d. $\int \frac{2}{\sqrt{1-x^{2}}} d x$
10. Find the exact velocity function and the exact position function given the following information:

$$
a(t)=t-3, \quad v(0)=4, \quad s(0)=-2
$$

11. The velocity of a particle is $v(t)=t^{3}-10 t^{2}+24 t \mathrm{ft} / \mathrm{sec}$. Compute the
a. Displacement over the interval $0 \leq t \leq 6$
b. Total distance traveled over the interval $0 \leq t \leq 6$
12. A bottle of wine at room temperature $\left(68^{\circ} \mathrm{F}\right)$ is placed in a refrigerator at 4 pm . Its temperature after t hours is changing at a rate of $-18 e^{-0.6 t}$ degrees Fahrenheit/hour. Explain in context what the following definite integral represents: $\int_{0}^{3}-18 e^{-0.6 t} d t$ and then compute the definite integral using your calculator.
13. An oil storage tank ruptures at time $t=0$ and oil leaks from the tank at a rate of $r(t)=100 e^{-0.01 t}$ liters per minute. How much oil leaks out during the first hour? You will need to use your calculator to compute the integral.
14. A car is moving along a straight road from A to B , starting at A at time $t=0$. Below is a graph of the cars velocity $v(t)$, measured in miles per hour.
a. How many miles away from A is the car at time $t=6$
b. At what time does the car change direction?
c. What does $\int_{0}^{8} v(t) d t$ represent in this problem?
d. What was the TOTAL distance the car traveled in the 8 hours?

15. Let the function F be defined by $F(x)=\int_{0}^{x} \frac{t^{2}-2 t}{e^{t}} d t$
a. Find $F^{\prime}(x)$ and $F^{\prime \prime}(x)$.
b. If they exist, determine the critical numbers for F .
c. Discuss the concavity of the graph of F.
16. a. $R_{5}=1.12$
b $L_{5}=0.32$

d. $\frac{2}{3}$
c. $\underbrace{\int_{0}^{2}\left(x^{2}-x\right) d x}_{2-1}=A_{2}$ -
17. These are approximate from the graph, your answers may differ slightly
a. $L_{5} \approx 25.6$
b. $R_{5} \approx 19.6$
c. $M_{5} \approx 23.8$
18. $\int_{1}^{7}(2 x-4) d x$
19. $\int f(x) d x$ is an indefinite integral and gives a family of functions, the antiderivatives of $f(x)$ $\int_{a}^{b} f(x) d x$ is a definite integral from a to b and gives a number, which can be interpreted as net area between the curve $y=f(x)$ and the x-axis.
20. $\frac{d}{d x}\left[\int_{a}^{b} f(x) d x\right]=0$, since $\int_{a}^{b} f(x) d x$ is a number, and the derivative of a constant is zero.
21. а. $\frac{3}{2}$
b. -12
c. -3
d. 10.5
22. a. Interpret the integral as net area under the curve from -2 to x, so

$$
g(-2)=0 \quad g(0)=4 \quad g(1)=6 \quad g(4)=5
$$

b.

c. $g^{\prime}(3)=f(3)=-2$ by FTC- Part 1 .
d. Looking at graph of $g(x)$ from part (b), The absolute maximum value is 7 , and is found at $x=2$.
8. a. $\frac{2}{3}$
b. $3-2 \cos 3-e^{3}$
c. $\frac{62}{3}$
d. $\frac{46}{15}$
е. $\frac{19}{3}$
f. $-\frac{3}{5} \ln (2)$
g. $\frac{e^{2}}{2}+e-\frac{1}{2}$
h. $\frac{\pi}{4}$
9. a. $-\frac{1}{4 x}+C$
b. $\tan x+\sec x+C$
c. $3 \sqrt[3]{x^{2}}+C$
d. $2 \sin ^{-1} x+C$
10. $v(t)=\frac{1}{2} t^{2}-3 t+4$, and then $s(t)=\frac{1}{6} t^{3}-\frac{3}{2} t^{2}+4 t-2$
11. a. 36 feet
b. $49 \frac{1}{3}$ feet
12. The integral represents the net change in the temperature of the bottle of wine over the 3 hour time period from 4 pm to 7 pm in degrees Fahrenheit. That is, it is the number of ${ }^{\circ} \mathrm{F}$ the temperature of the bottle fell in 3 hours while being refrigerated. We expect this value to be negative, as the temperature is falling as the bottle is cooled. $\int_{0}^{3}-18 e^{-0.6 t} d t=-25.04^{\circ} \mathrm{F}$
13. $\int_{0}^{60} 100 e^{-0.01 t} d t=4511.9$ liters
14. a. 9 miles \quad b. $t=5$ hours
c. Net distance or displacement from A after 8 hours.
d. 16 miles
15. a. $F^{\prime}(x)=\frac{x^{2}-2 x}{e^{x}}$, and $F^{\prime \prime}(x)=\frac{-x^{2}+4 x-2}{e^{x}}$
b. critical values are $x=0$ and $x=2 \quad$ (local max at $x=0$, local min at $x=2$)
c. Concave Up $(2-\sqrt{2}, 2+\sqrt{2})$, Concave Down $(-\infty, 2-\sqrt{2}) \cup(2+\sqrt{2}, \infty)$

