1. Evaluate the following definite and indefinite integrals (if they exist).
a. $\int_{0}^{1}(3-x)^{5} d x$
b. $\int_{0}^{1} \frac{d x}{(3 x-1)^{2}}$
c. $\int \frac{\sin x}{\cos x} d x$
d. $\int \cos x \cdot e^{\sin x} d x$
e. $\int \frac{4}{2 x-1} d x$
f. $\int_{0}^{\sqrt{\frac{\pi}{4}}} x \sin \left(x^{2}\right) d x$
g. $\int\left(x^{3}+1\right) \sqrt{x^{4}+4 x} d x$
h. $\int x^{4} \sec ^{2}\left(x^{5}\right) d x$
i. $\int_{1}^{e} \frac{(\ln x)^{3}}{x} d x$
2. Find the area of the region bounded by the curves. Draw a picture and shade the appropriate region.
a. $y=20-x^{2}$ and $y=x^{2}-12$
b. $\quad y=e^{x}-1, \quad y=x^{2}-x, \quad x=2$
3. Consider the region bounded by the curves $y=x^{3}, \quad y=8, \quad x=1, x=0$
a. Find the area of this region. Draw a picture and shade the appropriate region.
b. Find the volume of the solid obtained by rotating this same region about the y-axis. Draw a picture. Indicate which method you are using. $\qquad$
4. Let $R$ be the region in the first quadrant bounded by the graphs of $y=8-x^{\frac{3}{2}}, x=0$ and $y=0$.
a. Find the volume of the solid generated when $R$ is revolved about the $x$-axis.
b. The vertical line $x=k$ divides the region $R$ into two regions such that when these two regions are revolved about the $x$-axis, they generate solids with equal volumes. Find the value of $k$.
5. Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis. Use the specified method. Your set-up must include a graph of the region and at least one example of a disk/washer or cylindrical shell (depending on the method used).
a. $\quad y=x^{3}, \quad y=0, \quad x=1$ about the $x$-axis.
b. $y=\sqrt{x-1}, \quad x=5, \quad y=0$ about the $y$-axis
c. $\quad y=\frac{4}{x}, \quad x=1, \quad x=4, \quad y=0 \quad$ about $y$-axis

## Cylindrical Shells

d. $\quad y=3 x-x^{2}, \quad y=0 \quad$ about the vertical line $x=-2$

## Cylindrical Shells

e. $x=4-y^{2}, \quad x=0 \quad$ about the horizontal line $y=3 \quad$ Method:_You Decide
6. Find the average value of $f(x)=3 x^{2}-2 x$ on the interval $[1,4]$. Sketch the graph of $f$ and a rectangle whose area is the same as the area under the graph of $f$ on the interval.
7. The value, $V$, of a Tiffany lamp, worth $\$ 225$ in 1965 , increases at $8 \%$ per year. This means that its value in dollars $t$ years after 1965 is given by the function: $V(t)=225(1.08)^{t}$. Find the average value of the lamp over the time period 1965 to 2015. Round your answer to the nearest dollar.
8. Find the arc length of $y=e^{x}$ on [0,2]. Use your calculator and round to 4 decimal places.
9. Find the length of the curve $3 x=2(y-1)^{\frac{3}{2}}, \quad 2 \leq y \leq 5$
10. Use integration to prove that the circumference (length) of a semi-circle with radius 1 is $\pi$. Use the semi-circle $y=\sqrt{1-x^{2}}$ from $(-1,0)$ to $(1,0)$. [ Hint: recall that $\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+C \quad$ ]

