Math 180: Newton's Method, 4.8

Example: Use Newton's method to find all roots of the equation $e^x = 3 - 2x$, correct to 6 decimal places.

- 1. Get all terms to one side equal to 0: $3-2x-e^x=0$ 2. Define f(x): $f(x)=3-2x-e^x$ 3. Find the derivative, f'(x): $f'(x)=-2-e^x$
- 4. Graph f(x) on calculator to determine a reasonable first guess, x_1 , $[x_1=1 \text{ looks good}]$
- 5. Follow calculator instructions below to find the root.
- 6. Round to 6 decimal places.

CALCULATOR INSTRUCTIONS:

- 2. Go back to the home window, and CLEAR the screen.
- 3. Say our initial guess is $x_1 = 1$. Store your initial guess into X by typing: 1 STO

STO X ENTER

The screen will look like: $1 \rightarrow X$

4. Now type in $X - Y_1/Y_2$ STO X ENTER The screen will look like: $X - Y_1/Y_2 \rightarrow X$

Reminder, to type in \mathbf{Y}_1 the keystrokes are: VARS \blacktriangleright ENTER 1 to type in \mathbf{Y}_2 the keystrokes are: VARS \blacktriangleright ENTER 2

5. Continue to press ENTER to get the next x_2 , x_3 , x_4 , x_5 , ... Until you get the required number of decimal places.

In this example: $x_1 = 1$

 $x_2 = 0.6358246729$ $x_3 = 0.5946198249$ $x_4 = 0.5942049994$ $x_5 = 0.5942049585$

6. Round to the decimal place asked for. In this example: To 6 decimal places, the root is 0.594205