Math 280: Parametric equations
Vanden Eynden
One way to describe a curve is to define its points $(x, y)$ as functions of another variable, $t$.
We call $t$ a parameter, and
$x=f(t)$
$y=g(t)$ are called parametric equations.

1. Graph the curve defined by the parametric equations: $\quad \begin{aligned} & x=5-t^{2} \\ & y=t-2\end{aligned} \quad-3 \leq t \leq 3$

Indicate with arrows the direction the curve is traced as $t$ increases.

| $t$ | $x$ | $y$ | $(x, y)$ |
| :---: | :---: | :---: | :---: |
| -3 |  |  |  |
| -2 |  |  |  |
| -1 |  |  |  |
| 0 |  |  |  |
| 1 |  |  |  |
| 2 |  |  |  |
| 3 |  |  |  |



What does this curve look like?

Verify by eliminating the parameter t , and write in rectangular/Cartesian form.
2. Consider the curve defined by the parametric equations:

$$
\begin{aligned}
& x=\cos t \\
& y=\sin t
\end{aligned} \quad 0 \leq t \leq 2 \pi
$$

| $t$ | $x$ | $y$ |
| :---: | :---: | :---: |
| 0 |  |  |
| $\pi / 4$ |  |  |
| $\pi / 2$ |  |  |
| $3 \pi / 4$ |  |  |
| $\pi$ |  |  |
| $5 \pi / 4$ |  |  |
| $3 \pi / 2$ |  |  |
| $7 \pi / 4$ |  |  |
| $2 \pi$ |  |  |


a. Graph and describe this curve. Where does it start? Which direction does it go? Draw arrows indicating the direction of the path as $t$ varies from 0 to $2 \pi$.
b. Graph $\begin{aligned} & x=\cos t \\ & y=\sin t\end{aligned}$ on your graphing calculator. (you'll need to be in "PAR" mode)
c. How can we trace just the top half of the curve?
d. Find parametric equations for a circle centered at the origin with radius 5 .
e. Find parametric equations for a circle centered at $(\mathrm{h}, \mathrm{k})$ with radius r .

Come up with parametric equations of the following curves:

1. A vertical line through $(1,2)$.
2. A horizontal line through $(1,2)$.
3. A line with slope $2 / 3$ through $(1,2)$.
4. The function $y=x^{3}+1$
5. The function $y=f(x)$
