Math 280: Parametric equations Vanden Eynden

One way to describe a curve is to define its points (x, y) as functions of another variable, t. We call t a **parameter**, and

 $\begin{array}{l} x = f(t) \\ y = g(t) \end{array} \text{ are called$ **parametric equations** $. } \end{array}$

1. Graph the curve defined by the parametric equations:

 $x = 5 - t^2 - 3 \le t \le 3$ y = t - 2

Indicate with arrows the direction the curve is traced as *t* increases.

t	x	У	(x,y)
- 3			
- 2			
- 1			
0			
1			
2			
3			

What does this curve look like?

Verify by eliminating the parameter t, and write in rectangular/Cartesian form.

2.	Consider t	he curve	defined	by the	parametric	equations:
----	------------	----------	---------	--------	------------	------------

t	x	У
0		
$\pi/4$		
$\pi/2$		
$3\pi/4$		
π		
$5\pi/4$		
$3\pi/2$		
$7\pi/4$		
2π		

 $x = \cos t$

a. Graph and describe this curve. Where does it start? Which direction does it go? Draw arrows indicating the direction of the path as *t* varies from 0 to 2π .

b. Graph $\begin{array}{l} x = \cos t \\ y = \sin t \end{array}$ on your graphing calculator. (you'll need to be in "PAR" mode)

- c. How can we trace just the top half of the curve?
- d. Find parametric equations for a circle centered at the origin with radius 5.

e. Find parametric equations for a circle centered at (h, k) with radius r.

Come up with parametric equations of the following curves:

1. A vertical line through (1, 2).

2. A horizontal line through (1, 2).

3. A line with slope 2/3 through (1, 2).

4. The function $y = x^3 + 1$

5. The function y = f(x)