TANGENT LINES

1. a. Graph the curve defined by the parametric equations:

$$
\begin{array}{ll}
x=t^{2} & -2 \leq t \leq 2 \\
y=t^{3}-3 t
\end{array}
$$

Plot points. Indicate with arrows the direction the curve is traced as t increases.

t	x	y
-2		
-1.5		
-1		
-0.5		
0		
0.5		
1		
1.5		
2		

b. Find the curve's point of intersection. How many tangent lines does the curve have at that point?
c. Find the tangent line equations at the point of intersection.

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}
$$

$$
\begin{array}{ll}
x=t^{2} \\
y=t^{3}-3 t
\end{array} \quad-2 \leq t \leq 2
$$

d. Find the points on the curve where the tangent is horizontal or vertical.
e. Determine where the curve is concave up or concave down.

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}(d y / d x)}{d x / d t}
$$

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

2. Prove that the circumference of a circle with radius 2 is 4π using parametric equations.
3. Set up an integral that represents the length of the curve. $\begin{aligned} & x=t^{2}-t \\ & y=t^{2}\end{aligned}$ $\begin{aligned} & -1 \leq t \leq 2\end{aligned}$
