Math 280: 11.1 Sequences

Definitions and Theorems, Oh My!
Vanden Eynden


Definition:
A sequence 
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if we can make the terms 
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 as close to L as we like by taking n sufficiently large.  

If 
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 exists, we say the sequence converges.  Otherwise, we say the sequence diverges.  



Formal Definition of a limit:  A sequence 
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if for every 
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 there is a corresponding integer N such that 
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Theorem 3:   If 
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Squeeze Theorem for Sequences:    If 
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Theorem 6:   If 
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Theorem 7:   If 
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 and the function f is continuous at L, then
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Definition:  For the sequence   
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So, 
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 is convergent for 
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Definition:  

A sequence 
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 is called increasing if 
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, for all 
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A sequence 
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 is called decreasing if 
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It is called monotonic if it is either increasing or decreasing.

Definition:  

A sequence 
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 is bounded above if there is a number M such that 
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A sequence 
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 is bounded below if there is a number m such that 
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If it is bounded above and below, then 
[image: image35.wmf]{

}

n

a

 is a bounded sequence.

Monotonic Sequence Theorem:  Every bounded, monotonic sequence is convergent.



Examples:
(a) Write out several terms
[image: image36.wmf]123

,,,

aaa

K

, enough to help you answer the other questions.

(b) Describe the sequence using as many adjectives as you can. Use words like increasing, decreasing, monotonic, bounded above, bounded below, or bounded.

(c) Determine whether the sequence converges or diverges.  If it is convergent, find its limit analytically.  List any theorems that you use to determine the limit.
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