Math 280: 11.3 Notes on Remainder, Error and Estimating the sum of a series, s

Vanden Eynden

Example: Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$.
Since it is a p-series with $\mathrm{p}>1$, we know it converges. We also know that the function $f(x)=\frac{1}{x^{4}}$ is continuous, positive and decreasing on $[1, \infty)$

1. Estimate the sum of the series, s, using the $10^{\text {th }}$ partial sum s_{10}.

$$
s_{10}=\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots+\frac{1}{10^{4}} \approx 1.082037 \quad \text { on calculator: } \operatorname{sum}\left(\operatorname{seq}\left(1 / \mathrm{x}^{\wedge} 4, \mathrm{x}, 1,10\right)\right)
$$

2. How good is this estimate of s ?

Let's calculate the upper bound of the remainder (also called error). The error/remainder to this estimate s_{10} is the sum of all the terms $s_{11}+s_{12}+s_{13}+s_{14}+\ldots=R_{10}$
$R_{10} \leq \int_{10}^{\infty} \frac{1}{x^{4}} d x=\lim _{t \rightarrow \infty} \int_{10}^{t} \frac{1}{x^{4}} d x=\left.\lim _{t \rightarrow \infty} \frac{-1}{3 x^{3}}\right|_{10} ^{t}=\lim _{t \rightarrow \infty}\left(\frac{-1}{3 t^{3}}+\frac{1}{3(10)^{3}}\right)=\frac{1}{3(10)^{3}}=\frac{1}{3000}=.000333$
So the error is $\leq .000333$. Note: In general, $R_{n} \leq \frac{1}{3(n)^{3}}$ for any integer n
3. Improve this estimate of s for with the formula:

$$
s_{10}+\int_{11}^{\infty} \frac{1}{x^{4}} d x \leq s \leq s_{10}+\int_{10}^{\infty} \frac{1}{x^{4}} d x
$$

So:

$$
\begin{aligned}
s_{10}+\frac{1}{3(11)^{3}} & \leq s \leq s_{10}+\frac{1}{3(10)^{3}} \\
1.082037+.000250 & \leq s \leq 1.082037+.000333 \\
1.082287 & \leq s \leq 1.08237 \mathrm{C}
\end{aligned}
$$

We can approximate s with the midpoint of this interval so:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=s \approx \frac{1.082287+1.082370}{2}=1.0823285
$$

And the error of this estimate is at most half the length of the interval so:

$$
\text { error }<\frac{1.082370-1.082287}{2}=.0000415
$$

4. Find a value of n that will ensure that the error in the approximation of $s \approx s_{n}$ is less than .001 . So find n so that $\quad .001=R_{n}>\frac{1}{3(n)^{3}} \quad$ We need to solve for n in: $.001>\frac{1}{3 n^{3}}$ so $n^{3}>333.33$ which means $n>6.93$

This means that $n=7$ would give an estimate s_{7} with an error $<.001$

