Math 280: 11.9  Representations of functions as Power Series

The Geometric Power Series centered at x = 0


			R = 1


This one power series can lead us to an infinite number of OTHER power series representations.

Express the following functions as power series.


1.   			



[bookmark: _GoBack]







2.				












3.	








Differentiation and Integration of Power Series
[image: ]

Express the following functions as power series.  Don’t forget to find the constant term, C, if needed.

1.   			










2.			











3.	
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|Z| Theorem If the power series = ¢,(x — @)" has radius of convergence R > 0,
then the function f defined by

fD=c+ax—a +cax—aP+- = clx—a)

is differentiable (and therefore continuous) on the interval (@ — R, a + R) and

() f(x) =1 + 2e(x — a) + 3es(x — a) + -+ = D, ne(x — a)"!

n=1

(ii)ff(x)dx C + colx — a) q(x;a)z Ivz(x;af boees

- _ n+l
—c+3 CHM
n=0 n+1

The radii of convergence of the power series in Equations (i) and (ii) are both R.
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