Math 280 FINAL EXAM Formula/Theorem Sheet

Vanden Eynden
(You will be provided a fresh copy on exam day)

Derivatives of Inverse Trig Functions:
$\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x} \sec ^{-1} x=\frac{1}{|x| \sqrt{x^{2}-1}}$
$\frac{d}{d x} \cos ^{-1} x=\frac{-1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x} \csc ^{-1} x=\frac{-1}{|x| \sqrt{x^{2}-1}}$
$\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}$
$\frac{d}{d x} \cot ^{-1} x=\frac{-1}{1+x^{2}}$

Established Integration Formulas

$$
\begin{aligned}
& \int \tan x d x=\ln |\sec x|+C \\
& \int \cot x d x=\ln |\sin x|+C \\
& \int \sec x d x=\ln |\sec x+\tan x|+C \\
& \int \csc x d x=\ln |\csc x-\cot x|+C
\end{aligned}
$$

Trigonometric Substitution

Expression in the integrand	Substitution
$\sqrt{a^{2}-x^{2}}$	$x=a \sin \theta$
$\sqrt{x^{2}+a^{2}}$	$x=a \tan \theta$
$\sqrt{x^{2}-a^{2}}$	$x=a \sec \theta$

Half-Angle Formulas

$\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$
$\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$
$\tan ^{2} x=\frac{1-\cos 2 x}{1+\cos 2 x}$

Double-Angle Formulas

$$
\begin{aligned}
& \sin 2 A=2 \sin A \cos A \\
& \cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
& \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{aligned}
$$

Product Formulas

$$
\begin{aligned}
& \sin A \cos B=\frac{1}{2}[\sin (A-B)+\sin (A+B)] \\
& \sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)] \\
& \cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)]
\end{aligned}
$$

(A) Definition Partial Sums:

Given a series $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots$, let s_{n} denote its nth partial sum,

$$
s_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}
$$

If the sequence $\left\{s_{n}\right\}$, the sequence of partial sums $\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$ is convergent and its limit is a real number, $\lim _{n \rightarrow \infty} s_{n}=s$, then the series $\sum_{n=1}^{\infty} a_{n}$ is called convergent and we write

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots=s \quad \text { or } \quad \sum_{n=1}^{\infty} a_{n}=s
$$

The number s is called the sum of the series. Otherwise, the series is called divergent.
(B) Geometric Series: The series $\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+a r^{3}+\cdots$ is convergent if $|r|<1$ and its sum is $\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}$. If $|r| \geq 1$, the series is divergent.
(C) Test for Divergence: If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(D) Integral Test: Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_{n}=f(n)$. Then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(x) d x$ is convergent. In other words,
(i) If $\int_{1}^{\infty} f(x) d x$ is convergent, then $\sum_{n=1}^{\infty} a_{n}$ is convergent.
(ii) If $\int_{1}^{\infty} f(x) d x$ is divergent, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(E) P-series: The series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent if $p>1$ and divergent if $p \leq 1$.
(F) Remainder Estimate for the Integral Test: Suppose $f(k)=a_{k}$, where f is a continuous, positive, decreasing function for $x \geq n$ and $\sum a_{n}$ is convergent. If $R_{n}=S-S_{n}$, then $\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x$.
(G) Series Sum Estimate for the Integral Test:

$$
s_{n}+\int_{n+1}^{\infty} f(x) d x \leq s \leq s_{n}+\int_{n}^{\infty} f(x) d x
$$

The midpoint of this interval is an estimate of s, with error < (half the interval's length).
(H) The Comparison Test: If $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms and
(i) If $\sum b_{n}$ is convergent and $a_{n} \leq b_{n}$ for all n, then $\sum a_{n}$ is also convergent.
(ii) If $\sum b_{n}$ is divergent and $a_{n} \geq b_{n}$ for all n, then $\sum a_{n}$ is also divergent.
(I) The Limit Comparison test: Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series with positive terms.

If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$ where c is a finite number and $c>0$, then either both series converge or both diverge.

(J) The Alternating Series Test:

If the alternating series $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}+\ldots$. . where $b_{n}>0$ satisfies
(i) $b_{n+1} \leq b_{n}$
(ii) $\lim _{n \rightarrow \infty} b_{n}=0$
then the series converges.
(K) Alternating Series Estimation Theorem:

If $s=\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$ is the sum of an alternating series that satisfies
(i) $0 \leq b_{n+1} \leq b_{n} \quad$ and
(ii) $\lim _{n \rightarrow \infty} b_{n}=0$

Then

$$
\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}
$$

(L) Absolute Convergence:

If $\sum\left|a_{n}\right|$ converges, then $\sum a_{n}$ converges (absolutely).
(M) The Ratio Test for Absolute Convergence:

Let $\sum a_{n}$ be a series with non-zero terms and suppose $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=L$;
i. If $\mathrm{L}<1$, the series $\sum a_{n}$ is absolutely convergent.
ii. If $\mathrm{L}>1$ or $L=\infty$, then the series $\sum a_{n}$ diverges.
iii. If $\mathrm{L}=1$, the test is inconclusive. The series may be convergent or divergent. Use another test (not The Root Test)

(N) The Root Test for Absolute Convergence:

Suppose $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L$
i. If $\mathrm{L}<1$, then the series $\sum a_{n}$ is absolutely convergent.
ii. If $\mathrm{L}>1$ or $L=\infty$, then the series $\sum a_{n}$ diverges .
iii. If $\mathrm{L}=1$, the test is inconclusive. The series may be convergent or divergent. Use another test (not The Ratio Test)

Taylor series of the function \boldsymbol{f} centered at \boldsymbol{a} : $\quad f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$

First Derivative of parametric equations: $\quad \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \quad$ if $\frac{d x}{d t} \neq 0$

Second Derivative of parametric equations: $\quad \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}} \quad$ if $\frac{d x}{d t} \neq 0$

Arc Length for parametric equations, for $\alpha<t<\beta: \quad L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$

First Derivative of polar equations:

$$
\frac{d y}{d x}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

Area of polar region: $\quad A=\int_{a}^{b} \frac{1}{2}[f(\theta)]^{2} d \theta$

Conic Sections in Polar Coordinates

The conic is:

$$
r=\frac{e d}{1 \pm e \cos \theta} \quad \text { or } \quad r=\frac{e d}{1 \pm e \sin \theta}
$$

a) an ellipse if $e<1$
b) a parabola if $e=1$
c) a hyperbola if $e>1$

