Math 280 FINAL EXAM Formula/Theorem Sheet

Vanden Eynden

(You will be provided a fresh copy on exam day)

Derivatives of Inverse Trig Functions:

$$dx \qquad |x|\sqrt{x^2-1}$$

$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1 + x^2}$$
$$\frac{d}{dx} \cot^{-1} x = \frac{-1}{1 + x^2}$$

Established Integration Formulas

$$\int \tan x \, dx = \ln |\sec x| + C$$

$$\int \cot x \, dx = \ln |\sin x| + C$$

$$\int \sec x \, dx = \ln |\sec x + \tan x| + C$$

$$\int \csc x \, dx = \ln |\csc x - \cot x| + C$$

Half-Angle Formulas

$$\sin^{2} x = \frac{1}{2} (1 - \cos 2x)$$
$$\cos^{2} x = \frac{1}{2} (1 + \cos 2x)$$
$$\tan^{2} x = \frac{1 - \cos 2x}{1 + \cos 2x}$$

Double-Angle Formulas

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Product Formulas

$$\sin A \cos B = \frac{1}{2} \left[\sin(A-B) + \sin(A+B) \right]$$
$$\sin A \sin B = \frac{1}{2} \left[\cos(A-B) - \cos(A+B) \right]$$
$$\cos A \cos B = \frac{1}{2} \left[\cos(A-B) + \cos(A+B) \right]$$

Trigonometric Substitution

Expression in the integrand	Substitution
$\sqrt{a^2-x^2}$	$x = a\sin\theta$
$\sqrt{x^2 + a^2}$	$x = a \tan \theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$

(A) Definition Partial Sums:

Given a series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$, let s_n denote its nth partial sum,

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + a_3 + \dots + a_n$$

If the sequence $\{s_n\}$, the sequence of partial sums $\{s_1, s_2, s_3, ...\}$ is convergent and its limit is a real number, $\lim_{n\to\infty} s_n = s$, then the series $\sum_{n=1}^{\infty} a_n$ is called convergent and we write

$$a_1 + a_2 + a_3 + \dots + a_n + \dots = s$$
 or $\sum_{n=1}^{\infty} a_n = s$

The number *s* is called the sum of the series. Otherwise, the series is called divergent.

(B) Geometric Series: The series $\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + ar^3 + \cdots$ is convergent if |r| < 1 and its sum is $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$. If $|r| \ge 1$, the series is divergent.

(C) Test for Divergence: If $\lim_{n \to \infty} a_n$ does not exist or if $\lim_{n \to \infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

(D) Integral Test: Suppose f is a continuous, positive, decreasing function on $[1,\infty)$ and let $a_n = f(n)$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(x) dx$ is convergent. In other words,

(i) If
$$\int_{1}^{\infty} f(x) dx$$
 is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
(ii) If $\int_{1}^{\infty} f(x) dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

(E) P-series: The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$.

(F) Remainder Estimate for the Integral Test: Suppose $f(k) = a_k$, where f is a continuous, positive, decreasing function for $x \ge n$ and $\sum a_n$ is convergent. If $R_n = S - S_n$, then $\int_{n+1}^{\infty} f(x) dx \le R_n \le \int_n^{\infty} f(x) dx$.

(G) Series Sum Estimate for the Integral Test: $s_n + \int_{n+1}^{\infty} f(x) dx \le s \le s_n + \int_{n}^{\infty} f(x) dx$

The midpoint of this interval is an estimate of *s*, with error < (half the interval's length).

(H) The Comparison Test: If $\sum a_n$ and $\sum b_n$ are series with positive terms and (i) If $\sum b_n$ is convergent and $a_n \le b_n$ for all *n*, then $\sum a_n$ is also convergent. (ii) If $\sum b_n$ is divergent and $a_n \ge b_n$ for all *n*, then $\sum a_n$ is also divergent.

(I) The Limit Comparison test: Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms.

If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ where *c* is a finite number and c > 0, then either both series converge or both diverge.

(J) The Alternating Series Test:

If the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \dots$ where $b_n > 0$ satisfies (i) $b_{n+1} \leq b_n$

 $\lim b_n = 0$ (ii)

then the series converges.

(K) Alternating Series Estimation Theorem:

If $s = \sum_{n=1}^{\infty} (-1)^{n-1} b_n$ is the sum of an alternating series that satisfies (i) $0 \le b_{n+1} \le b_n$ (ii) $\lim_{n\to\infty} b_n = 0$ and $|R_n| = |s - s_n| \le b_{n+1}$ Then

(L) Absolute Convergence:

If $\sum |a_n|$ converges, then $\sum a_n$ converges (absolutely).

(M) The Ratio Test for Absolute Convergence:

Let
$$\sum a_n$$
 be a series with non-zero terms and suppose $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = L$;

i. If L < 1, the series $\sum a_n$ is absolutely convergent.

- If L > 1 or $L = \infty$, then the series $\sum a_n$ diverges. ii.
- iii. If L = 1, the test is inconclusive. The series may be convergent or divergent. Use another test (not The Root Test)

(N) The Root Test for Absolute Convergence:

Suppose $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L$ If L < 1, then the series $\sum a_n$ is absolutely convergent. i. If L > 1 or $L = \infty$, then the series $\sum a_n$ diverges. ii. iii. If L = 1, the test is inconclusive. The series may be convergent or divergent. Use another test (not The Ratio Test) $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$ Taylor series of the function *f* centered at *a*: $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dx}}$ if $\frac{dx}{dt} \neq 0$ First Derivative of parametric equations: $\frac{d^2 y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} \qquad \text{if } \frac{dx}{dt} \neq 0$ Second Derivative of parametric equations: $L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$ dt Arc Length for parametric equations, for $\alpha < t < \beta$: $\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$ **First Derivative of polar equations:** $A = \int_{a}^{b} \frac{1}{2} [f(\theta)]^2 d\theta$ Area of polar region: **Conic Sections in Polar Coordinates** The conic is:

$$r = \frac{ed}{1 \pm e\cos\theta}$$
 or $r = \frac{ed}{1 \pm e\sin\theta}$

- a) an ellipse if e < 1
- b) a parabola if e=1
- c) a hyperbola if e > 1