Structure Determination using NMR and IR Spectral Data

Click on a number to view the spectral data for each compound.

Data for each unknown includes: ¹H NMR (splitting patterns included) ¹³C NMR IR spectrum (KBr pellet or film)

Solvent peaks due to $CDCl_3$ are present at 7.2 ppm in the proton spectra and 77.0 ppm in the carbon spectra.

In the ¹H NMR spectra, the phrase "exchanges" means that shaking the NMR solution with D_2O resulted in loss of the signal due to hydrogen/deuterium exchange.

Click here to learn about interpretation of spectral data.

<u>#1 C₄H₆O</u>	$\frac{\#6}{C_8H_{19}N}$	$\frac{\#11 C_5 H_{12} O_2}{}$
$\frac{\#2}{C_3H_5O_2Br}$	<u>#7 C₃H₇OCI</u>	<u>#12 C₃H₇OCI</u>
<u>#3 C₉H₁₂</u>	<u>#8 C₆H₆O2</u>	<u>#13 C₆H₁₁O₂Br</u>
<u>#4 C₆H₁₀</u>	<u>#9 C₆H₄Cl₂</u>	<u>#14 C₁₀H₁₂O₂</u>
<u>#5 C₈H₆O2</u>	<u>#10 C₁₆H₃₅N</u>	<u>#15 C₉H₁₃NO</u>

Interpretation of Data

back to problems

Use the **molecular formula** to determine the degrees of unsaturation or double bond equivalents (rings or multiple bonds).

Most of the ¹H spectra contain first-order **splitting patterns**; in cases where some peaks do not follow the N+1 rule, by process of elimination of other peaks, you can solve the problem. Look for the obvious first-order splitting patterns:

- ethyl pattern (triplet and quartet)
- > isopropyl pattern (double and multiplet, which may resolve into a discernable heptet)
- > methoxy groups on esters (singlet downfield from alkane region, approx. 3.5 ppm)
- methyl group adjacent to a carbonyl (approximately 2.0 ppm)
- > aromatic signals along with at least 4 degrees of unsaturation indicates a benzene ring.

back to problems

Examine the IR spectrum to determine the **functional groups** present in the unknown:

- For example, if the formula contains oxygen, you should be able to distinguish between an ether versus an alcohol (O-H stretch).
- > If a carbonyl stretch is present, look for O-H stretch (acid) or N-H stretch (amide).
- ▶ Look for triple bonds at approximately 2200 cm⁻¹.
- > Look for sp^2 carbon-hydrogen frequencies above 3000 cm⁻¹ (alkenes, aromatic rings).

back to problems

Remember, the number of peaks in the ¹³C spectrum indicates the number of different kinds of carbon atoms, the magnetically different carbon atoms. Some of the ¹³C spectra contain carbon-hydrogen splitting information labeled as a **multiplet**.

For example, a peak listed as 38.6, t means the peak is at 38.6 ppm and exists as a triplet.

- > A quartet indicates there are three hydrogens attached to that carbon atom (CH_3 group).
- > A triplet indicates there are 2 hydrogens attached to that carbon atom (CH₂ group).
- > A doublet indicates there is one hydrogen attached to that carbon atom (CH group).
- A singlet indicates a quaternary carbon group.

back to problems

¹ H NMR spectrum	¹³ C NMR spectrum	IR spectrum
#1 C ₄ H ₆ O		back to problems
200 180 160 140 1	120 100 80 60	40 20 0

¹³C NMR spectrum

IR spectrum

 $#1 C_4H_6O$

back to problems

¹³C NMR spectrum

IR spectrum

#2 $C_3H_5O_2Br$

back to problems

