Alkyl, alkenyl and alkynyl groups

C-H stretching frequencies:

sp^3	-C-H	2800-2960 cm ⁻¹	C-C bending	1420-1480
sp^2	=C-H	3000-3100	C=C stretch	1620-1680
sp	≡С-Н	3300	C≡C	2100-2260

C-C stretching frequencies:

C-C	1200	without functional groups, very little dipole, weak bands				
C=C	1650	C=C isolated	1680	bond order = 1		
		C=C conjugated	1625	bond order = 1+		
		C=C aromatic	1600	bond order = 1.5		
C ≡ C 2200		terminal alkynes show C-H (3300) and triple bond (2200) internal triple bonds have no C-H and triple bond is weak				
C-C	bending	1420-1480				

Bands below 3000 suggest alkanes.

Bands just above 3000 suggest alkene =C-H and one should look for C=C stretch around 1660.

Bands at 3000 suggest alkyne \equiv C-H and one should look for C C stretch at 2200

Alcohols 3300 O-H stretch often very broad due to hydrogen bonding 1000-1200 C-O stretch- not reliable since other groups absorb here also

Amines 3300 N-H stretch weaker broad peak with "spikes"

- (1 amine R₂NH) one spike; (2 amine RNH₂) two spikes
- (3 R₃N) amines do not have N-H band

Hydrogen bonding causes the broadening of O-H and N-H bands.

Dilute samples have sharp peaks.

Other functional groups with O-H and N-H bands:

Carboxylic acids have O-H stretch at 3000.

The strong dimer hydrogen bonding lowers the frequency of O-H band and often overlaps with the C-H region.

Amides have N-H stretching bands similar to amines (of course the C=O is present to distinguish amides from amines)

Carbonyl groups C=O stretch 1630-1780 variable

C=O bands are higher frequency than C=C bands because the C=O bond is stronger.

Aldehydes, ketones and carboxylic acids all have the C=O band approximately the same frequency ~ 1710 cm⁻¹

Lower frequency: Amides ~ 1680 cm⁻¹ or less.

Higher frequency: Esters ~ 1730-1750 cm⁻¹

Acid chlorides and anhydrides ~ 1820 - 1750 cm⁻¹

Cyclic esters and ketones ~ 1780 cm⁻¹

Diagnostic peaks that accompany carbonyl groups:

aldehydes C-H stretch 2700-2900 (two bands, medium)

esters C-O stretch (ether oxygen) 1300

acids O-H stretch 3200-300 (broad) often overlaps with C-H bands