Nuclear Magnetic Resonance
Spectroscopy

The nuclel of interest are primarily
hydrogen and carbon

IH NMR also called PMR
13C NMR also called CMR



The Basis of NMR

NMR is based on the absorption of radiowaves by
certain atomic nuclei when the molecule is in a strong
magnetic field.

Previously, we learned that electrons have a spin quantum number
Atomic nuclei have spin states also
A non-zero spin is required for NMR



NMR Active and Non-active Nuclei

Nuclei with spin of +/-1/2 include 'H 13C 1N 9F
These are called NMR active nuclei

Some common isotopes have zero spin: 1°C and 16O
These are called non-active NMR nuclei



Spinning proton resembles a tiny magnet
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Protons in a magnetic field
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Absorption of energy causes
nuclear "spin flip"
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The size of the magnet determines
energy difference between spin states
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The NMR Event- What Causes
"Spin Flip"?

The combination of radio frequency and appled magnetic
field causes the nuclei to "come into resonance"

N -
el While the protons are in the magnetic
Jagl field, energy is applied to the sample; the
Jptics energy used is radio frequency radiation
B, T

When the frequency of radiation exactly
matches the energy gap between the spin
states, the nucleus undergoes a "spin flip"



Magnetic Shielding by Electrons

* The naked proton will come into resonance
with a specific combination of radio energy
and magnetic field strength.

* But real protons are surrounded by
electrons

» Circulating electrons generate a small
induced magnetic field that opposes the
external magnetic field

(B ex’rernal) a (B induced) =B effective



Shielding of Proton due to
Induced Magnetic Field

Induced magnetic field
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Chemical shift- position on the x-axis
determined by shielding

If gelectrons >f‘ Shielding by
were not present : i circulating {T
the signal might ! "‘ E’:E’ﬁ'fﬁ"ﬁ”i ;“r“ﬁ-?' i
External magnetic field strength B, >
Downfield Upfield

Figure 8.11 Shielding by o electrons causes 'H NMR absorptions
to be shifted to higher external magnetic field strengths.
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Field sweep NMR Instrument
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FT NMR Spectrometer

Precessing Free induction
nucleus decay Fourier

- hll tra_nﬁfnrm '
Time

Rf Frequency
pulse gomain domain

Superconducting magnet
(cooled by liquid helium)

The radio frequency excitation
pulse and resulting NMR signals
are sent through cables between
the probe coils in the magnet and
the computer.

Radio frequency (Rf)
generator and computer
operating console

Sample tube spins within the Fourier transformation of the signal
probe coils in the hollow bore from the time domain to the frequency
at the center of the magnet. domain occurs at the computer console.
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NMR Information

IH NMR spectrum contains 3 pieces of information:

1. Chemical shift- position of signal relative to TMS
standard (zero ppm). Chemical shift determined by
magnetic environment surrounding the proton.

2. Integration- the relative ratio of
non-equivalent protons in each signal.

3. Signal splitting- number of peaks in a signal is
determined by the n + 1 rule.



1. Chemical Shift
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http://www.chem.ucla.edu/cgi-bin/webspectra.cgi/bp12/H

2. Integration of Peaks

The red curves represent the peak areas ( integration)

methyl groups
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3. Peak Splitting

The (n+1) rule indicates the number of protons
o attached to neighboring carbon atoms

Hp )J\ Ha . .
CH3 O—CHy——CHy— CH,—CHs A singlet indicates
Hc H, H. there are no protons
on adjacent carbon
— atom

A triplet indicates
there are 2 protons on

adjacent carbon atom
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Chemical Shift
6 regions of NMR spectrum
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Table of Chemical Shifts
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Chemical Shift due to electron withdrawing effect

triplet and quartet = ethyl pattern
CH4CH,-I CH;CH,-CI
3.2 ppm M L 3.5 ppm
CH3CH,-NO, CH;CH,-OH
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Chemical Shift for two
Isomeric Esters: C,H50,

protons adjacent to oxygen are downfield

O
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The signals for both spectra are the same:
a singlet, triplet & quartet.



Splitting Patterns: n+1 Rule

» A signal is split into multiple
peaks by adjacent protons

* The signal is split into n+1 peaks,
where n = the number of
eguivalent adjacent protons



Splitting Pattern for
1,1,2-tribromoethane
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Splitting Pattern for
11,2-trichloroethane
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Figure 9.6 The 300 MHz "H NMR spectrum of 1,1,2-trichloroethane,
Expansions of the signals are shown in the offset plots.
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Signal Splitting from one adjacent proton
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Splitting pattern for ethyl isopropyl ketone
C¢H,0

2-methyl-3-pentanone \/H/
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Splitting Pattern for Ethyl Group
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Reciprocity of Coupling Constants

+ The distance between peaks of a multiplet are
called coupling constants or J values
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Pascal’s Triangle

1 singlet
1 1 doublet
1 2 1 triplet
1 3 3 1 guartet

1 6 15 20 15 © 1

Intensities of the lines in a multiplet can
be determined using Pascal's triangle.



NMR spectrum of p-xylene
(no signal splitting)
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Figure 9.5 The 300 MHz 'H NMR spectrum of 1,4-dimethylbenzene.
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Interpreting Spectra

* Look for diagnostic chemical shifts
» Look for relative ratios (integration)
* Analyze splitting patterns

» Consult Tables of chemical shifts and
Tables of coupling constants (J values)
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Long-Range Coupling: allyl alcohol
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C6H12OZ
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1-bromo-2-iodobenzene
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2-phenyl ethanol Q\/\OH




More complex spectra to follow...



C14H14

1,2-diphenylethane
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C.H-0,

2-methoxybenzaldehyde
o-anisaldehyde
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