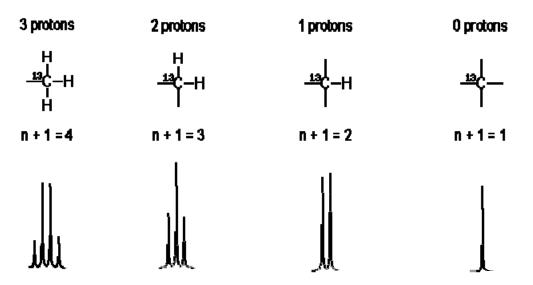
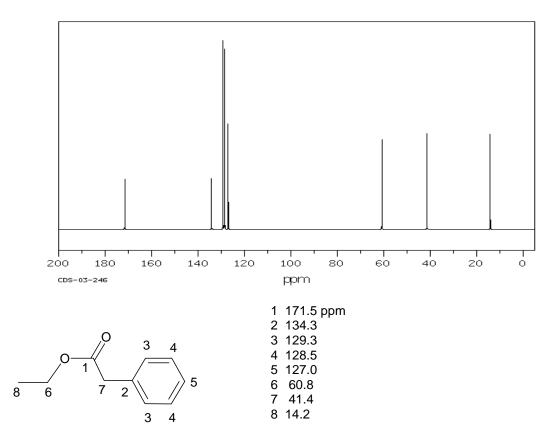

Correlation Table for ¹³C chemical shifts:

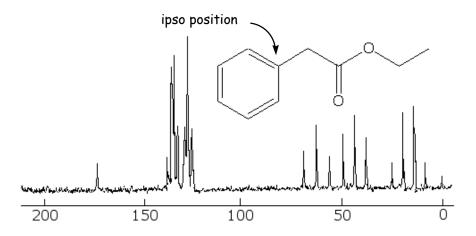


Helpful observation: The chemical shifts for ¹³C nuclei are 15–20 times larger than the corresponding ¹H nuclei frequencies. Example: acetone. Protons next to the carbonyl observed at 2.01 ppm. The ¹³C signal for the carbon next to the carbonyl is 2.01 (x 20) =40 ppm.

Chemical shifts for carbonyl functional groups (ppm)

ketones	220-200	amides	180-160
α, β -unsaturated ketones	210-190	acid chlorides	180-160
aldehydes	205-190	anhydrides	175-150
carboxylic acids	185-165	nitriles	120-115
esters	185-160		


Spectra which show the spin-spin splitting, or coupling, between carbon-13 and the protons directly attached to it are called **proton-coupled spectra** or **nondecoupled spectra**.


Coupled and decoupled Spectra

Spectra in which the protons are decoupled from the C-13 nuclei are called **proton-decoupled** spectra or simply **decoupled** spectra. Decoupled spectra show <u>singlets for each non-equivalent</u> carbon-13 nucleus.

Here is the proton-decoupled spectrum of ethyl phenyl acetate. Nice and clean!

Here is the **proton-coupled spectrum** for the same compound, ethyl phenyl acetate. Notice the two triplets and a quartet for the sp³ carbons, whereas the aromatic carbons show non-first order splitting. Also, the carbonyl carbon and the **ipso** ring carbon both have a low intensity in both spectra (no hydrogens attached to these carbons).

